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The nonisothermal transient process of flow of a nonlinearly elastoviscous liquid 
in a circular tube is numerically studied for the case of pulsed application of a 

pressure head. 

Polymer solutions and mixtures as well as emulsion and suspension type liquid composi- 
tions widely used in many technological processes possess elastic properties. These proper- 
ties manifest themselves in transient deformation regimes. We shall consider a case of great 
practical importance, the development of flow in a tube under the action of a constant pres- 
sure head. The experimental studies of Meissner [i] show that in flowing media with elastic 
properties flow development differs from the monotonic velocity field development in nonelas- 
tic liquids. This problem was considered in a number of theoretical studies [2-6] for an 
elastoviscous liquid with constant properties [2-4], for the nonlinear-viscous Oldroyd model 
with one relaxation time [5, 6], and also for nonelastic liquids [7, 8]. But until the pres- 
ent there has been no theoretical study of the effect upon flow development of factors such 
as existence of a relaxation time spectrum, which is intrinsic to all real polymers, noniso- 
thermal conditions, and the character of the dependence of relaxation time and relaxation mod- 
uli on deformation rate. 

The present study is a numerical investigation of nonstationary nonisothermal flows of 
nonlinear-elastoviscous liquids in long coaxial tubes with annular cross section (RI < r ~ R2). 
For a tube with length significantly greater than the size of the hydrodynamic and thermal in- 
put sections, the mathematical formulation of the problem may be written as 

Ov~ Op 1 a 
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The outer and inner cylinders are maintained at constant temperatures e2 and el, and dis- 
sipative heat production may be neglected for liquids with moderate viscosity. In this case, 
across the flow area we have the well-known logarithmic temperature distribution (e -- e~)/ 

(e= - el) = (in r/R1)/(in R2/RI). 

To describe the liquid behavior we use a nonlinear integral rheological equation of state 
with the memory function dependent on the invariants of the deformation rate tensor. Real 
polymer liquids can be considered incompressible. The general form of such an equation for 
the excess stress tensor then appears as [9]: 

t 
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m = Z  ~ % fk(Su(t , ) )exp[_S g ,~(Su( t ' ) )d t"]  

k ~ l  t '  

2 = 2trD=; D is the deformation rate tensor; E is a unit tensor; e is a model parame- where S D 
ter; Ct, C~ I are Cauchy and Finger finite deformation tensors describing the geometric non- 
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linearity, The physical nonlinearity of Eq. (2) is described by the dependence of the memory 
function on the deformation rate. 

Differentiating Eq. (2) with respect to time, we obtain an equivalent system of differen- 
tial equations [i0]: 

o r  

T,,, = s T~ ,,z OT~,~z z_ g~ ~ OVz 
, - - - ~ k , r z  =: P k - - ;  

at ~ 8r 

ap~ F gh A;=  ~_2,. at ~ x~ L, 

(3) 

which together with Eq. (I) describe the fluid flow. In shear flow the nonlinearity of the 
model of Eq. (2) is determined solely by the dependence of fk' gk on SD: as S D + 0 fk' gk + I. 

The relaxation time spectrum in the linear viscoelasticity range is approximated by an expo- 

nential [9] I k = I/k~; ~k = no/~(e)k~" Here ~ is the spectrum characteristic, 1.5 ~ 8 ;  

~(~) is the Rieman zeta function; I is the greatest relaxation time in the spectrum; and qo 
is the initial Newtonian viscosity. With appropriate choice of the functions fk, gk many 
models well known in the literature may be obtained from Eq. (2) [9]. The following liquid 
types were considered: with constant properties fk = gk = i, nonlinear models of Bird--Carro 

22 C 
(BC) fk = ]/(IH-h~SD), gk= ], Meister (M) fk = I, gk= I@--~-~-%hSD , and Macdonald-Bird--Carro 

(MBC) f~=(I+X~SD)/(I+L~SD); gh=(l § ~/2 . The value I' = 0.21 was used in 

the calculations. This choice of models permits analysis of various factors: In the BC model 
change in shear modulus is considered; in M, changes in relaxation time; while in the MBC mod- 
el, changes in both shear moduli and relaxation times are considered. 

In view of the strong temperature dependence of rheological properties of pol}~er solu- 
tions, the flow character is determined to a great extent by the temperature field. For non- 
isothermal flows in Eq. (2) we employ the temperature--tlme superposition principle [II], ac- 
cording to which, neglecting the temperature-density correction ~ = ~sa(8); ~ = Isa(8), and 

{ QR ( ] I ]} The subscript s refers to some reference temperature, for which a (0) = exp . - - .  0 O~ _ ."  

we choose the mean temperature between the cylinders. The direction of the temperature head 
is characterized by the parameter ~ = (el - @2)/@; at v < 0 the outer cylinder is heated, and 
at v > O, the inner. The parameter ~ was varied over the range 0.1-0.5. The temperature de- 
pendence of the viscosity is described by the parameter b = R6s/Q, with b varied from 0.05 to 
0.i. The character of the flow is defined by the parameters: ~, E1 = 1~/ph =, the elasticity 
number, equal to the ratio of the relaxation times and the flow development time in the vis- 
cous liquid gap; We = iV/h, the Weissenberg number, defined as the ratio of the relaxation 

/ ap ~ ~ R2--~I which times to the characteristic shear velocity (here V= [-~-z ) h2/~j' and 6= h 
R~ Ri ' 

defines the relative curvature of the gap. For El<< 1 the elastic properties of the liquid 
have practically no effect and the liquid behaves as a nonlinear viscous one with viscosity 

(4) = N~f~(y)/gh(T), while as We + 0 fk § I, gk § i, and system (3) describes a liquid with 
k=! 

constant properties. The values of ~, El, and We were varied over the following ranges: ~, 
2-6; El, 0.i-i00; We, 1-25, which ranges correspond to real materials. Thus, for example, for 
an 0.01% aqueous solution of polyacrylamide at h = i0 cm, E1 = 0.4, ~ = 2.5. The ratio of E1 
and We was selected so that the Reynolds number Re = We/E1 corresponded to the laminar range. 

We will consider nonstationary flows of a liquid with constant properties fk = gk = I. 

In the initial moments the velocity increases linearly at every point of the gap ~z ~ 1 apt , 
p & 

and tangent stresses are absent before arrival of the shear wave. Waves moving from the chan- 
nel walls distort the planar velocity profile and tangent stresses appear. Increases in both 
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Fig. i. Velocity values at maximum of stationary profile for elastovis- 
cous liquid with constant properties at E1 = i00, a = 4, 6 = 0.i, k = 2 
for numerical (i) and quasistationary (2) solution. 

Fig. 2. Velocity values at maximum of stationary profile for MBC model at 
E1 = i0, ~ = 2, 6 = 0.I, We = i (i), i0 (2), 20 (3). Wave stage shown 
with expanded tn/ph = scale. 

the elasticity number E1 and the spectral parameter ~ cause wave propagation to be retarded. 
A characteristic feature of elastoviscous liquid behavior is the presence of two stages: a 
wave stage with rapidly changing stress profiles, and a quasistationary stage in which a sta- 
tionary stress distribution is established and the liquid inertia is insignificant. In this 
second stage the liquid motion is determined solely by creep at constant stress. The duration 
of the wave stage is essentially determined by inertial properties (t ~ ph2/D) while the du- 
ration of the second stage is determined by the relaxation time (t ~ %). These two stages are 
clearly separated at EI~I00. In the quasistationary stage, when liquid inertia may be ne- 
glected, Eq. (i) can be written as 

t 

az -7- 0--7 r. Or 
0 

where ~ ( l - - l ' ) =  

o b t a i n  

~lk e x p ( t - - t ' _ )  

h=l 

is the relaxation function. Using a Laplace transform, we 

i dJ dp [ R~--R~ ln--~-], (4) 
v~ = 4 dt dz r ~ -  R~ In R2/R1 

where the creep function J is related to the relaxation function by the expression [ii] 

I 

[J(t--T) IF'(T)dT= I. In order to compare the numerical results with the analytical solution, 

we use the Oldroyd model (which can be obtained from Eq. (3) at k = 2), for which 

d (t) = ~n + Lx (1 - -  ~) [1 - -  exp ( - -  tl~M)l/n. 

Figure I shows curves of the change in flow velocity at the maximum point as obtained nu- 
merically for two relaxation times, and from Eq. (4). Beginning at time t~/ph 2 ~ 15 these 
values practically coincide. 

For an inelastic liquid the quasistationary stage is absent and the exit to stationary 
flow is determined solely by inertial properties. Velocity and stress development is mono- 
tonic. In an elastoviscous liquid the velocity and stress oscillate about their stationary 
values. For example, the increase in tangent stress on the wall above its stationary value 
reaches 20% for E1 = i0, ~ = 2, 6 = 0.i. Increase in elasticity number E1 and the parameter 
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leads to manifestation of elastic properties -- the amplitude and number of oscillations in- 
crease: at E1 = I0, ~ = 2, 6 = 0.i the maximum velocity value for the first oscillation Vmax/ 

V = 0.51, at E1 = 30, ~ = 2 Vmax/V = 0.72, and at E1 = i0, ~ = 3 Vmax/V = 0.81. At ~ < 3 
(for E1 = i0) the velocity values oscillate above the stationary ones, approaching them from 
above, while for e ~ 3 the oscillation minima lie below the stationary values. Stationary 

flow of an elastoviscous liquid with constant properties coincides with the flow of a Newto- 
nian liquid with the same initial viscosity. With increasing curvature of the annular gap 
Vma x shifts toward the inner cylinder. The case 6 = 0 corresponds to a plane channel, with 
Vma x located on the axis. For 6 < 9 the deviation from the axis is relatively small. For 

= 0.I it is practically absent, while at 6 = 1 it is 6%, and at ~ = i0, 18%. This a~rees 
with the results of [12]. For 6 ~ i0 as flow develops the velocity maximum in the initial 
stage moves from the channel axis to the inner wall. The duration of this displacement tn/ 
ph 2 ~ I. 

We will consider the flow of a nonlinear-elastoviscous liquid for the BC, M, and MBC mod- 
els. In these models it is also possible to distinguish two stages in flow development - wave 
and quasistationary. As in the case of a liquid with constant properties, increase in ~ and 
E1 increases the duration of the initial stage and the passage of shear waves. The shear wave 
propagates more slowly with increase in pressure gradient (parameter We). The duration of the 
first stage is t ~ ph2/q, while for the second, t % k. 

Similarly to the case of the liquid with constant properties, the velocity and stress pro- 
files oscillate upon exit to the stationary state, and increase in relaxation time and ~ leads 
to more intense manifestation of elastic properties, the amplitude and number of oscillations 
increasing. Thus, change in the elasticity number from i0 to I00 increases the value of Vmax/ 
Vstat at the peak of the first oscillation by 1.9 times for the BC model, 1.35 times for MBC, 
and 1.85 times for M. In the BC and MBC models at ~ = 2, after one oscillation the ve!ocity 
exits monotonically to the stationary value, while in the M model at ~ = 2, We = 4 there is 
an increase in the amplitude of the second oscillation, which disappears with increase in We. 
This can be explained by the fact that with increase in We the relaxation times decrease, and 
for high shear velocities the oscillatory character is less clearly expressed. For the BC and 
MBC models the effect of change in We is weaker. With increase in pressure head the effective 
viscosity falls, so that the stationary value of the relative velocity increases. For the BC 

model at We = 1 and I0, Vstat/V = 0.136 and 0.913; for the MBC model at We = 1 and i0, Vstat/ 
V = 0.137 and 0.376. Increase in Weissenberg number leads to suppression of elastic effects, 
the oscillation peak decreasing. At sufficiently high We (We = i0 for BC, We = 4 for M, We 
20 for MBC) the velocity value oscillations lie below the stationary values, and the exit to 
the stationary state is more similar to the nonlinear viscous case (Fig. 2). 

Analysis of the exit to the stationary state shows that two types of velocity change are 
possible: The value approaches the stationary value either from above (at low We) or from be- 
low, passing through a minimum. In the quasistationary stage the dependence of velocity on 
time t/k for identical ~ and We but differing E1 is practically the same, since there is no 

dependence on density. 

For nonisothermal flow in a stationary temperature field the velocity and stress distri- 
butions change due to temperature dependence of the rheological characteristics. The viscos- 
ity near the heated wall decreases and the velocity profile shifts toward that wall. This 
shift is larger, the larger the temperature head. In a planar gap the velocity profile shift 
is symmetric relative to the isothermal case upon change in the direction of the temperature 
head. With increase in curvature the velocity maximum becomes less than the isothermal value 
if the inner cylinder is heated (v > 0), or greater than the isothermal value if the outer 
cylinder is heated (v < 0). As is evident from Fig. 3, the shear wave which occurs in the 
initial stage propagates more rapidly at the less heated wall. The tangent stresses at the 
heated wall are less than the isothermal value, but are greater at the cold wall. Thus, for 
the MBC model at E1 = We = i0, ~ = i, ~ = 2, T~/Tol = 0.647, T~/T02 = 1.203 if v = 0~25, and 
TI/Tol = 1.630, T2/To2 = 0.665 if v = --0.25. Here To~ and To2 are the tangent stress for iso- 
thermal flow, and TI and T= are the same quantity for nonisothermal flow. 

The results obtained coincide qualitatively with the experiments of [i], in which flow 
development in low density polyethylene was studied. Upon exit to the stationary state the 
liquid performed two oscillations. The experimental data agree best with the calculations 
performed for a liquid with constant properties at ~ = 2, E1 = i0, and for the nonlinear mod- 
els with We = 1 and E1 = i0. 
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F ig .  3. V e l o c i t y  (a)  and t a n g e n t  s t r e s s  (b) p r o f i l e s  f o r  non-  
isothermal liquid flow in the MBC model at E1 = i0, We = I, a = 2, 6 = 
0.i at times: a) t~/ph 2 = 0.i (2,5), 4.5 (3,6), 30 (1,4,7); 
b) t~/ph 2 = 0.i (i), 4.5 (2), 30 (3), at: a) v = 0 (i), 0.25 
(5,6,7), -0.25 (2,3,4); b) ~ = 0 (I), 0.25 (II), -0.25 (III). 

NOTATION 

r, ~, z, cylindrical coordinates; Vz, velocity; Trz, tangent stress; e, temperature; 8p/ 
8z, pressure gradient; p, density; t, time; Q, flow process activation energy; R, universal 
gas constant; R2, outer cylinder radius; RI, inner cylinder radius. 
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